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Discrete spectrum of the hydrogen atom:
an illustration of deformation
theory methods and problems
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0. INTRODUCTION

This paper reproduces part of the content of three lectures delivered by us
at the S. Banach Institute in November 1983, during the semester of Mathema-
tical Physics. We have omitted here the general review of deformation theory
which we gave, as this can be found without difficulty in the literature [ie. 1, 2,
7]

Bayen et al [1] have proposed to build quantum mechanics on «classical»
phase space, i.e. a symplectic manifold, with «classical» observables, i.e. functions
on that manifold; quantization arises as a deformation called a * product of the
algebra of functions. In this approach, one avoids the usual setting of self adjoint
operators on a Hilbert space, and one gets a unified framework of both classical
and quantum mechanics; in particular, it allows an easy interpretation of the
fact that classical mechanics is a limit of quantum mechanics when the Planck
constant tends to zero.

In this deformation approach, Bayen and al have defined the notion of
spectrum of an observable; their definition is given entirely in terms of * product.
In particular, they have computed the specturm of the hydrogen atom [1]. in a
completely intrinsic # product way.

We discuss here the Kepler problem again, from a different point of view. The
main difference is that we define a generalized Weyl transform; this implies that
we use operators for our computation of spectra. The Weyl transform (§2 and
§4) is directly related to the * product and to the group SO(4) of invariance
of the problem. The construction and the properties of such a correspondence

(*) Chercheur qualifié du F.N.R.S.
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for non abelian groups have independent interest.

One other aspect of this paper is that we compute the spectrum with two
different mathematically equivalent = products. one is induced by Moval product
on IR®-this was the one introduced and used in [1]-and the other is given
intrinsically on the cotangent bundle to an arbitrary Lie group. It is not surprising
that we get different spectra: indeed, already for IR®" different orderings cor-
respond to mathematically equivalent * products and as is well known different
orderings in quantum mechanics usually lead to different spectra.

We feel that the «quantization choice» made by physics should be analyzed
in greater details, and lead to restrictions on the class of # products on one hand
and to the notion of spectral equivalence for deformations on the other hand.
In particular. it is remarkable that physics chooses the Moyal = product (i.c.
symmetric ordering) which is intrinsically characterized on R by a maximal
invariance property. In this direction, the invariance (or more precisely the
covariance) of the * products considered here under SO(4. 2) should be investi-
gated.

The paper is organized as follows. In §1 we exhibit the regularisation of the
Kepler problem as given by J.-M. Souriau [10]. Classical phase space is an open
submanifold of the cotangent bundle to the group SU(2). This is not the regula-
risation used in {1]). It has the drawback that it corresponds only to the bound
states (i.e. discrete spectrum); on the other hand it is geometrically very beautiful.
In §2, we recall the definition of * product, mathematical equivalence, invariance
and - in the framework of IR2" - Weyl correspondence. This is used to give a
notion of spectrum, equivalent to the one given in [1]. The §3 is devoted to
recall the explicit construction of two different * products on the cotangent
bundle to SU(2), both invariant under SO(4). Finally §4 contains the generalized
Weyl transform and two computations of the spectrum.

During the preparation and the redaction of this paper we had innumerable
discussions with our friends M. Flato and D. Sternheimer; they have cnormously
contributed to the clarification of the notions used here: we thank them who-
leheartedly.

1. REGULARISATION OF THE KEPLER PROBLEM [10]

The Kepler problem is the classical mechanics description of a point particle
in a central attractive force field, the intensity of which is inversely proportio-
nal to the square of the distance of that particle to the attractive center. If 7
denotes the position of the particle in a Galilean frame attached to the center
and if D is its velocity, the differential equations governing the motion are:
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d7
— =7
dt
dv r _
—_ = r = 7l).
P A LY
The well known constants of the motion are:
1 |
(i) theenergy E = —2- 72— — . We shall assume from now on that E < 0.
r
(ii) the angular momentum h =FAD
- 1 — r
(iii) the Lenz vector L = hAD+ ~ |
V—2E [ r

The evolution space of this system is the open subset of R7, & = {(F, 7, t) |E <O,
r # 0}; the fundamental vector field is:

An equivalence relation is defined on & by x ~ ) if x and y belong to the same
integral curve of Z or to the same «extended» integral curve of Z. If H = 0, the
motion leads to collision after a finite time, the integral curve of Z is extended in
the future by taking its «mirror image» with respect to the instant of collision pre-
serving energy and trajectory; it is similarly extended in the past before the
moment of an «initial collision» by taking a «mirror image». Let p denote the
canonical projection & - K = &/_; a smooth manifold structure is defined on
K by a collection of charts (C]., sp/.) where C]. ={k e]<|k has no collision at
time 7} and ¢, : C; > Ré (7, 7,1 > (7,/_, 17,]_). This manifold K is the phase space
of the Kepler problem.

The symplectic structure £ in K is defined as follows, let 8 be the 1-form
on &:

B=vdr—Edt + d(3Ef—2r D).

One checks that
HZ2)B=0=0L,p

There exists thus a 1-form § on X such that 8 = D *5. We then define
2 =dB.

Souriau has shown that (K, £) is naturally symplectomorphic to the cotangent
bundle to the 3-sphere T*S3 with its canonical symplectic form, from which
one has deleted the zero section. We simply recall here the pertinent definitions.
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The cotangent bundle T*S? is considered as a submanifold of IR® = T*IR* =
= R* x IR**. More precisely
T*S? ={(Q.PYER x R*"| Q%= 1.(P. Q) = 0.

Let us define a map G, &~ T*S% denote by (4, B)F. 7. 1) the (4 x 2) matrix:

(F-0)0——  2Em
r
(4,B) = _
r-o 2Er+1
and let
1
i, 0 cosV=2E( 0v-2E1) V=2EsinV=2F£(r-v—2E1)
V-2E

B 0=\, | JAB)

SiNV=2E(F-5-2Et) cosV—2E(F v-2ED

-2E

then qo(r', U, t) = (QO, PO). One checks that Gy 6~ T*S3 factorizes through K .
and that the induced map p,: K - T*S3is a symplectic diffeomorphism if one
deletes the zero section and if the symplectic form on 7*S7. is the restriction to
T*S3? of the symplectic form on T*R*, — dB A dQ, The absence of the zero
section is justified by the fact that:

, 1
Pf=— —
0 2E
We will from now on identify K with T*S¥\{zero section!. the hamiltonian
function A on K is the energy function E. which is the restriction of the function
~ 5P The functions associated to the constants of the motion 7 and L are
respectively:
(P.Q =3 vectors corresponding
h=(PANQD) iT*S, to the first 3 components of
P, Q).

L=(Q,P—P,0) g

One recognizes the 6 functions on 7*S3, which are induced on this symplectic
manifold, by the usual lift to T*S3 of the standard action of 0(4) on S3C R*.

It is useful to observe that the hamiltonian /7 does not belong to the univer-
sal envelopping algebra U (so(4)) which can be identified to the vector space of
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restrictions to T*S3 of polynomials in the functions P A Q; on the other hand
H™ 1 does belong to U (so(4)).

2. GENERALITIES ON % PRODUCTS

Let (M,F) be a smooth 2r-dimensional symplectic manifold and let N =
=C~(M, ), denote by E(N,v) the space of formal power series in v(€C)
with coefficients in N.

DEFINITION 1. A x product on (M, F) is a bilinear map N x N - E(N; v).
(f,ge)~>f+g= EO v"C,(f, g) which satisfies the following axioms:
r=

) Cfe=r¢g

(i) Cl(f, g) =1{f,g}= Poisson bracket of fand g = F(Xf, Xg) where Xf(Xg)
is defined by z'(Xf)F =--df, (i(Xg)F =—dg)

(iii) C(f,8)=(—=1)C(g[)

(v) (f*xg)*xh=f=*(gx*h), this has a meaning as » extends in an obvious
way to a bilinear map E(N, v) x E(N; v) - E(N, v)

(v) Vr=1,C, isa bidifferential operator vanishing on the constants.

REMARKS. (a) A % product is, by virture of (i) and (iv), a formal deformation
of the associative structure of N.

(b) If » is pure imaginary, f * g = g * f by virture of (iii)

1

C —

(c) >
a formal deformation of the Lie algebra structure of N, given by the Poisson
bracket.

(frg—g+f)= £ v¥C, |(fig) is by virture of (i) and (iv)

DEFINITION 2. Two star products on (M, F), = and *' are said to be mathematical-
ly equivalent if there exists a formal power series

r=20

where T, is a linear map N - N given by a differential operator and where T,is
the identity map, such that for all f, g € N one has:

T(f«g)=Tf+ Tg.

PROPOSITION 1. [8] If the second de Rham coliomology group of M vanishes,
all = products on M are mathematically equivalent.
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Let G be a Lie group of symplectomorphisms of (M. F) und let g be the Lic
algebra of G. If X g, the vector field X* on M associated to X has for value
at the pointx € M-

d
X*= — (exp—1tX -x), _ .
X dt r=10
The action of ¢ on M is hamiltonian if. for all X € g. there exists a function
fy €N such that
HXOF =—4dfy

and if furthermore, forall X. Y €,
Ux Iyt =Sxy)

DEFINITION 3. 4 = product on (M. F) is said to be G geometrically invariant
ifforall f,geNand forall k €G

K*¥(f*xg)=(k*f) * (k*g).
A * product on (M, F) is called a » representation of a if for all X, Y €aq.

1
TI, Uy xfy =Sy s fy) =1ty fyi :fiA'. Y-

When both these invariance conditions are satisfied the = product is said to be
strongly invariant by G.

PROPOSITION 2. [6] If the second G-invariant de Rham cohomology group of
M vanishes and if there exists on M a G-invariant connection, rwo G geometrical-
Iy invariant star products, = and x are invariantly equivalent, i.e. the formal
power series U defining the equivalence can be chosen such that the Tr’s are
G invariant differential operators.

Example: The Moyal = product is defined on IR?". which is identified with
the cotantent bundle to the abelian group IR”: the symplectic structure /7 is
the standard one on T*IR”. We shall denote by g’ (i <#) the coordinates on
IR"” and, with a little abuse of notation, by (q"~pl.) the coordinates on T*IR™.
In these coordinates, the symplectic form £ reads:

H

i=]
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The affine symplectic group R**, G = Sp(n, R) - IR”, has a hamiltonian action
on T*RR",

0 -1
let F= (1 On) be the matrix associated to the symplectic form and let
n

0 —1
A "—( n) = —F~1 the elements of A are designated by A% (a, b < 2n).

The Moyal * product is defined on N by:

V}‘

frg= fg+}: —P(fg)

r=1

2n
b
P(f.8)= Z AmbL AR WS E

It is clearly G invariant in the strong sense and it can be shown that this inva-
riance property uniquely characterizes the Moyal product.

The function p; is the function corresponding to the element B - of the Lie
algebra of IR”; the injective Lie homomorphism R” > N which sends d ,on p;
«extends» to an associative injective homomorphism of U (IR") (= the universal
envelopping algebra of IR") - N, the image of this homomorphism is the associa-
tive algebra of polynomials in the variables pi's with constant coefficients. We
shall be concermed with the associative algebra A of polynomials in the pi's
with coefficients which are smooth functions of the ¢''s (4 =k : R" - ll(IR”){
smooth}) and with the subalgebra B of polynomials in the pi's with coefficients
which are polynomials in the ¢''s. Both 4 and B are also associative algebras
with respect to the Moyal = product.

In the classical formulation of quantum mechanics one associates to each
function on IR?" belonging to a certain class, a self adjoint operator on L*(IR");

in particular to the «position» qj corresponds the operator ([f [ and to the mo-

h 1
mentum p; corresponds the operator — 8q/. h = T x Planck constant|. One
i 2

way to extend this into a lincar map of B into the self adjoint operators on LHIR")is

to send a polynomial in p].'s and ¢’'s onto the corresponding completely symmetric
. h
expression in the elementary operators ¢/ -1 and — 0 i This correspondernce
i 4q

has been generalized by Weyl to include non polynomial type functions: the
domain of this generalized correspondence has been very extensively studied [4].
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DEFINITION 4. The Weyl correspondence W is the associative algebra homorphisi
(A, %) > (A, 0) (= algebra of self-adjoint operators on L*(IR™)) such that W(qj) =
=q’Iand W(pi) =2vad i

q

REMARK. We shall also use term Weyl correspondence for the extension of W
to non polynomial functions in the variables pi's. when we will deal with this
extension we will remain formal in the sense that the domain of W is not made

precise.

PROPOSITION 3. The Weyl correspondence restricted to the = algebra B sends
a polynomial on the corresponding completely symmetrized operator.

Proof. Assume first we have a polynomial of degree 1 in the p/,"s. Then

n -~
' ' ; i P A
W(p'.qll ...ql”)=W(pI. wqt e xg—v Z 61./ql‘ qlq"
= ’

. . n S - .
=2Val.oq’1 o og "~ Z 5iqu"o... ogle. .og™"
=1

n .. - . . .
=v Z 5(.”}111 o ogio. og"+42vglo og" 0,.
j=1
On the other hand the completely symmetrized operator reads:

2v

n . . . )
Z Z q'a(l)mqlo(j)aiq’a(i+ l)mqlo(u)
(n+1D)! =

j=00€E€S,

and the two expressions are clearly equal. A completely parallel calculation
shows that the equality also holds for a polynomial of degree 1 in the q''s. By
recurrence we can now assume that the equality holds on one hand for all degrees
<k in the variables pl.'s and for these degrees in pl.'s for all degrees in ¢*'s and
on the other hand for the degree & in pl.'s and for all degrees < 7 in ¢"'s.

Observe then that one has the identity:

k i . n . . - .

~ ] In - In 7 Im Ty _
E pi* @y Biopy 41+ ) Gy ep gt )=
=1

m=1

J Iy
2(171‘1 D 4 Log™.
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Hence:
W, p = —— }L_ W(p,) o Wp, - B, py 44"
p,‘l"-pikl - g - k+] — p,‘Q pi]"'pig"'pikq - d
! . W( oW il "im /n
o Z qjm) (pilmpikq g4 )
k+1 .2

which, by recurrence, is clearly the completely symmetrized operator.

Bayen and al. have given in [1] a = product version of the Schrodinger equa-
tion and have suggested a definition for the spectrum of a hamiltonian function.
We simply rephrase their definitions in a form which is going to be used in the
applications we are making.

Let ¢ : R" > IR be a real analytic function and let  be the linear map defined
by:

W, H=W{(fe)0) V€N for which W(f) is defined.
DEFINITION 5. Given a hamiltonian function H on R*" we define the correspon-
ding Schrodinger equation as:

VxH=EY
where E is a complex number and where ¥ H is the linear map defined by

W H, =), f+H) VfeN for which W(f) is defined.

REMARK. Using the definition of { we see that Schrodinger equation means
that, for all appropriate functions f

(W(WH)eX0) = E(W(f)e)0)
and in view of the analyticity of y:
W(H)¢ = Ey.

1

h
If one takes for hamiltonian function H = 5- z p,.2 + V(p) and v = 5— , this
i i

last relation is the usual Schrodinger equation.

DEFINITION 6. The spectrum of the hamiltonian H is the set of complex numbers
such that the corresponding Schridinger equation admits a non trivial solution.
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3. STAR PRODUCTS ON T*S3

The first * product defined on T*S? was described by Bayen and al. [1].
we recall their construction.

We have shown in §1 that 7*S3 appears naturally as symplectic submanifold
of T*R* (= R* x R**); it also appears naturally as a quotient of an open sub-
manifold w ={(Q,P) & T*IR4{ Q # 0] by the group K (isomorphic to the con-
nected component of the affine group of IR) acting on w by:

(0, 0)Q,P)=(pQ,p"'P+0Q) (pER;,0ER).
This action of K on w is clearly symplectic. Let Il : w — w/K be the canonical

o 0 (P,Q)Q
projection and let I' : w - T*S3(Cc T*R*) (0, P) » | — .| Q|P- ——=]|.
o] 1917 T

the map I1' factorizes throuth w/K and one checks that the induced map
a:w/K—~T*S3 is a smooth diffeomorphism. The orbits of K in w are 2-di-
mensional submanifolds; the tangent plane 7 at the point (Q.P) to the orbit
of this point is spanned by the vectors:

X =0Q0,~Pdp Y =003,

The orbit is thus a symplectic submanifold of w, furthermore there exists a

2-form v of maximal rank on w/K such that IT*y |Ti =—(dPAAQ) ]Tl (where

T+ means the orthogonal to T relative to the symplectic form £ =—dP A dQ).
def

The 2-form

1
— IX)YQ A2 =
Q2 def

is exact, vanishes identically on T+ and is such that (X, ¥) = AM(X, Y). Hence
Q=TI1*y + A
and v is a symplectic structure on w/K.
The 2-form I1'*(—dP A dQ|T*S3) is invariant by K, vanishes on the orbits.

thermore 7% at a point of T*83 (c T*IR*) coincides with the tangent space to
T*S3 at that point. Hence I1'*(—dPAdQ]| )=I*y: as ooll =1I1" one

concludes that:

T*S3

¥ (— dP/\dQ|T*S3) =7

and « is a symplectic diffeomorphism.
Let now f, g €N (w/K = T*S?) and denote by f(g)=1*f(I1*g). The Pois-
son bracket ! £, g }is a K invariant function on w.
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1f,8}=dg(Xp = N*(dg(N_Xp).
The vector field Xf is also K invariant, belongs to 7%, and
I(XPQ = —df = —1*df = i(XpTI*y
= H*(i(H*Xf) v).
Hence H*Xf: Xf and:
P P
{f.8}=11.8}.

This relation leads to a definition of a « product on T*S3.

DEFINITION. The «Moyal % product» on T*S3 is defined by:

p'(f. &
— P!
r=0
Each term of the right hand side is a function on  invariant by K as the P’'s
are K invariant. The definition thus makes sense.

REMARK. All axioms of s products, except axiom (v) are clearly satisfied. To
check that the various terms are given by bidifferential operators it is enough
to observe that a basis of vector fields on w is given by { X, Y, Z (a < b)} where
Z,eT" and [X,Z ) =[Y,Z,]=0. The invariance properties of the Moyal «
product imply that P (f, §) is expressed only in terms of Z, derivatives of f and g.

PROPOSITION 1. The Moval x product on T*S3 is strongly invariant by the
action of O(4) on T*S3.

Proof. Geometrical invariance of the x product is obvious as the action of O(4)
on w commutes with the action of X on w and as O(4) preserves the Moyal
+ product. It is also a representation of so(4) because the functions PA Q7«3
are the functions associated to a basis of so(4) and becauseiﬁ\\Q ]T*s3 =PAQ.

One can identify SU(2) to s3 by considering the point (a, 8) € C?2
(|| +]B8]*=1) as a point in IR*. The left action of SU(2) on itself, lifts to an
action of SU(2) on T*S? which is hamiltonian. We shall call ﬁi (i < 3) the func-
tions corresponding to this action and one checks that

By=h—L, (cf. §1).

Similarly if we denote by p; the functions corresponding to the «right action»
of SU(2) on T*S3 one has
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p,=n;,+ L,
In addition the p, are quadratic functions on T*R*and one checks that:
P *P;=p;p; + (P 0} +4v76

The second # product on 7*S7, is the intrinsic % product defined by identify-
ing T*%S3 to T*SU(2). Let G be an arbitrary Lie group. let us denote by 7*G its
cotangent bundle and by Il : T*G — G the canonical projection. Let XI. (i<n
be a basis of the Lie algebra g of G and let X, be the corresponding left inva-
riant vector fields on G. If 8! are the left invariant [-forms on G such that
Oi(f/) = §ij and if 2 T*G->R:&E> E(fi) one checks that the Il-forms
(dp;, IT*9*) form a basis of 1-forms on T*G. The dual basis of vector fields
VAR Y,) is such that

nz =0 ny=4x.
* *x 1 !

The action of G x G onto G given by (g. /1) - x =gxh™ ! (g h. x €G) lifts to
T*G, this action is hamiltonian. The vector fields corresponding to the left
action have for value at £ (€ T*G) Ad H(§)” L. Yi(E), the vector fields associated
to the right action are Y, (§) + ci}.kpk(‘g’)Zj(E) (ci].k = structure constants of g in
the basis X;) and the corresponding functions are precisely the pl.’s.

The linear injective map g — N : X, — p, extends to an injective map el (g)
(= universal envelopping algebra of ) >N (X, ... X, ) = — X EI

! K odef k! ooss, foth
o X, - ..Apl.k, whose image is the set of polynomials in the pi's with

ok pll .
constant coefficients.

THEOREM (5]. On the cotangent bundle T*G of an arbitrary Lie group G there
exist a x product having the following properties
() forall f€ C™(G), forallu € C™(T*G) one has

r

hini 12 . .
M¥fcu=T1%u+ ) (1) — H*(XI.].‘.Xl.'f)(Zl‘.uZl"u)

!
r=1 r.

(ii) forall P, Q monomials of degree k, k' in the pf’s one has

k+k'—1
PsQ = Z Q2v) o NeP)- 0O 4
r=90

For an element a € U(8), one denotes by a, the projection of a on the subspace
U%(8) = ¢ ( homogeneous polynomials of degree ¢ ) parallely to the subspace
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& 1" (a)
r=0
r# ¢

(iil) in particular when P = p,:

ko (=2v)

jl i2 j, k] kr
B’pl'rciklc}'lkz"'cfr—xkr(z RV AN))

pi*Qz
r=0 r:

where Br is the r-th Bernouilli number.

(iv) the « product is entirely determined by properties (i) and (iii).

PROPOSITION 1. The x product on T*G defined by the preceding theorem is
strongly invariant by G x G.

Proof. The geometrical invariance by the lift of the left action of G on G is a
consequence of the following remarks:

(a) (L* )*N*f = TI*L*f VgEG
g

(b) L*(X,f) = X(L%) VgEG, Vi=1...n

(c) (L*,,)*(Ziu) = Z"((L**l)*u) VgeG, Vi=1...n
4 4

(d) (L*_)*p; =p; VgEG, Vj=1...n
4

From these remarks we deduce the geometrical invariance of u x v when either
u = I1*fand v is arbitrary, either u and v are polynomials in the pi's with constant
coefficients. To prove geometrical invariance for arbitrary » and v in N, it is
enough, as the x product is defined by bidifferential operators, to prove it when
u and v are polynomials in pi's with coefficients which are functions on G; this
last point is achieved by a recurrence argument on the degree of the polynomials
inp/s.

Similarly geometrical invariance by the lift of the right action of G on G
results from a few simple observations

(@) (RP*I*f=T*R* f VgEG

(b") R:ﬂ)?if=(Adg~1){fik(R:_1f) VgeG, Vi=1...n
() (RD¥*Z'w = (Adg), ZM(R)*w) VgeG, Vi=1...n
(@) RH*p, =(Adg™! ) Py VgeG, Vji=1...n.

A recurrence argument similar to the one sketched above proves the invariance
of the  product.
To get the strong invariance by the lift of the left action of G one observes
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that formula (iii) of the theorem gives:

1
(DD, =D D) =0, D)

2v

For the strong invariance by the lift of the right action of G one remarks that
the function associated to the element X, of g is (Ad x’l):.‘pk and uses the geo-
metrical invariance of the & product.

PROPOSITION 2. The two geometrically invariant « products on T*S?, construct-
ed so far are distinct and invariantly equivalent.

Proof. To show that they are distinct we observe that
P *p/:pip/+v{pipi}+4vz8ij (Moyal)
D; *P; =p;D; + V{p; D} (intrinsic).

3 _
Rham(T*S )=
(T*S3) .and that there exists an so(4) invariant torsion free

To prove that they are invariantly equivalent, we remark that 0 = Hdze

2
Hde Rham , inv by so(4)

connection on 7*S, [9].

4. SPECTRUM OF THE HYDROGEN ATOM
We first compute the spectrum of the hamiltonian A using Moyal % product

on T*S3 and the corresponding Weyl transform. Recall that

]
H=— —
2p2

and that one has:
3
Zpi2:h2+L2:P2
i=1
so that
3
P2=) poap—1207
i=1

When using the Weyl transform. it will be easier to deal with a4 % polynomial
in the pl.'s than to a rational function. We thus compute
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P2*F(P2)—F(P2)*P2:§ (p;xp; * F—F xp; xp,)
:IZ[pi*(pi*F—F*pi)+(pi*F—F*pi)*pi]
=202 (p = ipp Fitip, Fixpy)

as p; is a polynomial of degree 2 on w. Now
(P F)=F'{pu P2}=0

and thus P2 « F(P?) is a formal series containing only even terms and truncated
at order 4 as P2 is a polynomial of degree 4 on w. Hence

V2 V4
P . F(PH=P2-F(P)+ — B (PLF)+ — PP F).
21 2 41t

The invariance by so(4) implies that each of the term is a function of p? only.
A direct computation shows that:
B,(P% F)=16P*(3F + P*F")

B,(P2,F)=96(18F + STP?F" 4+ 32P*F" + 4P°F").

1
Hence when F = I; one gets

This implies that
1
Hs —=1+16v%H.
H
Schrodinger equation reads:
VxH=EY
which by virtue of the previous relation is equivalent to:
1 1+ 16v2E
Vs —= ————
H E
or also to:
1 —8»iE

Ep, xp)= —— V.
P —2E
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DEFINITION. The Weyl transform W on T*S? associated to the Moyal product.
is the homomorphism of the algebra (A, x) (A ={polvnomials in the pl.'s With
coefficients which are smooth functions on S3Y) into the algebra (A, 0) (A =
algebra of self-adjoint operators on L*(S?)) which is such that:

(i) W(p)=2vX,

(i) w(Il*g)=g-1d (g:S?->R; N :T*S3 > 573

(iii) W(fxg)=W(f)oW(g).

As in the flat (IR*") case we interpret Y as the linear map associated to an analytic
function ¢ on S3 by

W, ) = W(HreNe) (e = unit of SU(2)).
Schrodinger equation now implies that:

1-8°E
4rippg= —— v
—2F
where A is the Laplace Beltrami operator on S3. This gives the spectrum as

1 — 8v2E
—— = —4v2(n + )
—2F

or:

1

8v2(n + 1)?

th .
Whenv = — one has the usual spectrum of the hydrogen atom {1].

Computation of the spectrum of A with the intrinsic % product and the cor-
responding Weyl transform starts in the same way. One has

As above:
P2y F(PY) = F(P?) « P

and thus P? « F(P?) is a formal series containing only even terms. The invariance
by so(4) implies that each term is a function of P? alonc. But the series is not
truncated at order 4. Furthermore a brutal calculation shows that the first term
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has a coefficient which is totally different from the one appearing in the Moyal
product:

| 3202

Hy —=1— H+....
H 3

This is already an indication that the spectrum will be different. We shall now
prove that the spectra are indeed different, in a sequence of short lemmas.

LEMMA 1. Let g be a smooth function of P2. Then
2t
P2, g =P2-g + = VZt[Z atgr/(P2)1+r—t:|
>0 r
r>0
where a£ is a real number and g’/ is the r'" derivative of g.

This is proved using formula (iii) of the theorem of §3, and the fact that by
invariance each term is a function of PZ above.

LEMMA 2. Let f, g be smooth functions of P*. Then

2t
— 21 ) t pif o jl(p2Ni+i—t
frg=fe+ I v [Z al, filg!l(P?) ]

ij>0
where al'.j is a real number.
To prove this lemma one first observes that it is enough to prove it when f
is a polynomial as the s product is given by differential operators. One then

proceeds by recurrence on the degree of f.
This implies that:

1
PZ — =1 > 2t n
P2 +,>0V 4 (PZ)I

LEMMA 3. The following formal identity holds

1\ 1 1 1 ) 1
— — —_— — — —— S .5
* p?) 4t p2? *oeoo P2 (PZ)I + SEO T (PZ)t+s
where cf is a real number.

This is proved by induction on ¢.
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Using lemma 3 one sees that there exist real numbers a, such that

1 R , | 1
— =P =14+ X vilgl — w0 — (f times)
P2 1>0 P2 P2
Going back to Schrodinger’s equation we get:

1

Vel —=9 (14 X va/(H s .. s M)
H 10

; !

=Y+ X val Y =Ey s —

>0 i

, 1. i o .
or equivalently that (1 + X 143’atE’) — is an eigenvalue of — . Using the
>0 E H

Weyl transform associated to this product we sce as above that therc exist an
integer m such that:
1 7
— (1 4+ X Vz’a['E[) = 8v-min + 2).
>0
Assume that the spectrum of A coincides with the one obtained with the Moval
% product. Then for any integer n, therc would exist a integer m such that

"

u
(4 D1+ 2 ‘tj =m{m + 2).
\ 120 (n 4 1)

This is easily shown to be impossible and thus the spectrum of /7 is not the one
given by the Moyal « product. One can prove a slightly stronger result. namely
that the spectrum is not the form:

1
E:—_ﬁ + K (N = 0).
ra(n + 1)

We are for the moment unable to compute the spectrum of /4.
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