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Discrete spectrum of the hydrogen atom:
an illustration of deformation
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0. INTRODUCTION

This paperreproducespart of the contentof threelectures delivered by us
at the S. BanachInstitute in November1983, during the semesterof Mathema-

tical Physics. We haveomitted here the generalreview of deformationtheory

which we gave, as this can be found without difficulty in the literature [i.e. 1, 2,
7].

Bayen et al [1] have proposedto build quantummechanicson <<classical>>

phasespace,i.e. a symplecticmanifold,with <<classical>>observables,i.e. functions
on that manifold,quantizationarisesas a deformationcalleda * product of the

algebraof functions. In this approach,oneavoids the usualsettingof self adjoint
operatorson a Hilbert space,andone gets a unified frameworkof both classical

and quantum mechanics;in particular, it allows an easyinterpretationof the
fact that classicalmechanicsis a limit of quantummechanicswhen the Planck
constanttendsto zero.

In this deformation approach. Bayen and a! have defined the notion of

spectrumof an observable;their definition is given entirely in termsof * product.
In particular,they havecomputedthe specturmof the hydrogenatom [11, in a

completelyintrinsic * productway.
We discusshere the Kepler problem again, from a different point of view. The

main difference is that we define a generalizedWeyl transform;this implies that
we use operatorsfor our computationof spectra.The Weyl transform(§ 2 and
§4) is directly related to the * product and to the group SO(4) of invariance
of the problem. The constructionand the propertiesof sucha correspondence

(*) Chercheurquaiifie du F.N.R.S.
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for non abeliangroupshaveindependentinterest.

One other aspectof this paper is that we computc the spectrumWith two

different mathematicallyequivalent * products,oneis inducedby Moyal product

on - this was tile one introduced and used in 1] - and the other is given

intrinsically on the cotangentbundle to an arbitraryLie group.It is not surprising

that we get different spectra~mcleed,already for ~ different orderings cor-

respond to mathematicallyequivalent * productsand as is well known different

orderingsin quantummechanicsusually leadto different spectra.
We feel that tile <<quantizationchoices made by physics should he analyzed

in greaterdetails,and lead to restrictionson tile class of * productson onehand

and to tile notion of spectral equivalencefor deformationson the other hand.

In particular, it is remarkable that physics choosesthe Moval * product (i.e.

symmetric ordering) which is intrinsically charactenzedon fl~,20 by a maximal

invariance property. In tills direction, the invariance (or more precisely tile

eovariance)of tile * productsconsideredhereunder SO(4, 2) should be investi-

gated.

The paper is organized as follows. In § 1 we exhibit the regularisationof the

Kepler problem as given by J.-M. Souriau [10]. Classicalphasespaceis an open

submanifoldof the cotangentbundle to the groupSU(2). This is not tile regula-

risation used in [I]. It has tile drawbackthat it correspondsonly to the bound

states(i.e. discretespectrum);on theotherhandit is geometricallyvery beautiful.

In §2, we recall thedefinition of * product,mathematicalequivalence,invariance

and - in the framework of ~2n - Weyl correspondence.TIus is used to give a *

notion of spectrum,equivalent to the one given in [II. The §3 is devoted to

recall the explicit construction of two different * products on the cotangent

bundle to SU(2),both invariantunderSO(4).Finally §4 containsthegeneralized

Weyl transformandtwo computationsof tile spectrum.

During the preparationand tile redaction of this paperwe had innumerable

discussionswith our friends M. Fiato and D. Sternheimer;theyhaveenormously

contributed to thc clarification of the notions used here~we thank them who-

leheartedly.

1. REGULARISATION OF THE KEPLER PROBLEM [10]

The Kepler problem is the classical mechanicsdescriptionof a point particle

in a central attractive force field, the intensity of which is inversely proportio-

nal to tile squareof the distanceof that particle to the attractive center. If F

denotesthe position of the particle in a Galilean frame attachedto the center

and if U is its velocity, thedifferential equationsgoverning themotion are:
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dF
— =v
dt

dt3 F
— =—— (r =

dr r3 def

The well known constantsof the motion are:

(i) the energyE = -~- 172 — . Weshallassumefrom now on thatE < 0.
2 r

(ii) the angularmomentumh = 1 A 13

(iii) the LenzvectorL = A 17 + -~

The evolutionspaceof this systemis the opensubsetof UV, ~ = {(F, 13, t) E < 0,
r ~ 0}; the fundamentaivectorfield is:

z=~a
7—--a~+a1.

An equivalencerelation is definedon ~ by x -~ y if x andy belong to the same
integral curve of Z or to tile same<<extended>>integral curve of Z. If H = 0, the
motion leadsto collision after a finite time, the integralcurve of Z is extendedin

the future by taking its <<mirror image>> with respectto the instantof collisionpre-
serving energy and trajectory; it is similarly extendedin the past before the

momentof an <<initial collision>> by taking a <<mirror image>>. Let p denotethe
canonical projection ~ -+ 1< = ~/~ a smoothmanifold structureis defined on
i( by a collection of charts (C1, p~)where = { k E 1(1 k has no collision at

time t1} and : C. ...~.fl~,
6: (F, 13, t) -+ (V~, ~ This manifold K is the phasespace

of the Keplerproblem. ‘ /

The symplecticstructurefZ in K is defined as follows, let ~ be the 1-form

on~:

~ =DdT—Edt + d(3Et — 27’ ~)

Onechecksthat

i(Z)13OLz13.

Thereexiststhusa h-form ~on K suchthat~ = p ‘~. We thendefine

~2=d~.

Souriau has shown that (K, fl) is naturallysymplectoniorphicto the cotangent
bundle to the 3-sphereT*S3, with its canonicalsymplectic form, from which

onehas deletedthe zerosection.We simply recall herethe pertinentdefinitions.
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The cotangent bundie T*S3 is consideredas a submanifold of hR8 = T*1R4 =

= IR~x p4*, More precisely

T*S3=](Q,F)EIR4x R4*~Q2 l,(P.Q)= 0].

Let us define a map q
0 : —~T*S

3: denoteby (A,BXF, P. t) tile (4 x 2) matrix:

(~ii)P—— 2Eri3
r

(A,B)= - -

rn 2Er+l

andlet

1~ 0 cos~(~6— 2E() ~sjnV~(7P—2Ej}

o
1(A,B) i —

— sinV—2E(F-P—2Et) cosV~2E(F-~—2Lt)

then q0(F, 0, t) = (Q0, Pa). One checks that q0 : T*SI factorizes throughK

and that the induced map ~ : K . T*S
3 is a symplecticdiffeomorphismif one

deletesthe zerosection and if the symplectic form on T*S3, ~5 the restriction to

T*S3 of the symplectic form on T*1R4, — dP
1~A dQ0. Tile absenceof the zero

sectionis justified by the fact that:

p
2

2E

We will from now on identify K with T*S3\]zero section]. the hamiltonian

function H on K is the energyfunctionE. which is therestriction of tile function

— - The functions associatedto tile constantsof the motion Ii and L are
2P2

respectively:

(P. Q = 3 vectorscorresponding

h = (PA Q~~T~S’ to the first 3 componentsof

F, Q).

L =(Q
4P—P~Q)~T*~.

One recognizesthe 6 functions on T*S
3, which areinduced on this symphectic

manifold, by the usual lift to T*S3 of the standardaction of 0(4) on S3C JR4.

It is useful to observethat the hamiltonian II doesnot belong to the univer-

sal enveioppingalgebra11 (so(4)) which can be identified to the vector spaceof
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restrictionsto T*S
3 of polynomials in the functions FAQ; on the other hand

H 1 doesbelongto 11 (so(4)).

2. GENERALITIES ON * PRODUCTS

Let (M, F) be a smooth 2n-dimensionahsymplectic manifold and let N =

= C ~(M, C); denote by E(IV, v) the space of formal power series in v(E C)

with coefficientsin N.

DEFINITION 1. A * product on (M, F) is a bilinear map N x N —* E (N; v).
(f,g) -÷f* g = ~ vTC~(f,g) which satisfiesthe following axioms:

rO

(i) C
0(f,g)=f’g

(ii) C1(f, g) = { f, g }= Poissonbracketof f and g = F(Xf~ Xg) where Xf(Xg)

is defined by i(Xf)F= --- df, (i(X5)F=— dg)
(iii) C’~(f,g) = (—- lyç(g,f)
(iv) (f* g) * h =f* (g * h), this has a meaning as * extendsin an obvious

way to a bilinear map E(IV, v) x E(N; v) -+ E(N, n)
(v) Vr ~ 1, ~.

2ris a bidifferentialoperatorvanishingon the constants.

REMARKS. (a) A * product is, by virture of (i) and (iv), a formal deformation

of theassociativestructureof N.
(b) If n is pureimaginary,7’”~= * f by virture of (iii)

(c) (f* g—g * = r0 v2rC
2 1(f, g) is by virture of (ii) and (iv)

a formal deformation of the Lie algebra structureof N, given by the Poisson

bracket.

DEFINITION 2. Two starproductson (M, F), * and *‘ are saidto be mathematical-

ly equivalentif thereexistsa formalpowerseries

where T~is a linear iiiap ~\T .- N given by a differential operator and where T0 is
the identity map,sue/ithatfor alif, g ENone /ias

~(f*g) = ~f*’ ~g.

PROPOSITION1. [8] If tile secondde Riiain cohoinologvgroup of M vanishes,
all * products on .111 are mathematicall.l’equnalent.
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Let G be a Lie group of symplectomorphismsof (Ill. F) and let ~ be tile Lie

algebra of G. If X E g, tile vector field X* on M associatedto N has for value

at tile pointx EM:

d
X~= — (exp — tX - x)~--

dt

The action of G on ill is hamiltonian if. for all X C g. there exists a function

EN such that

i(X)F~dfx

andif furthermore,for ailX, YEq.

DEFINITION 3. A * product on (M. F) is said to be G geometrically invariant

if for al/f, g ENandfor all kEG

k*(f*g) = (k*f) * (k*g).

A * product on (M, F) is called a * representationof q if for all N, Y e ~.

~(f~ *f~—f~*fx) = ]f~.f~]
1~x.yi

When both theseinvariance conditionsare satisfied the * proc/oct is said to be

strongly invariantbl’ G.

PROPOSITION 2. [6] If tile secondG-ini’ariant de Rhan> cohoinolog> group of

ill vanishesand if there exists on M a G-i/ll’al’iant connection, two Ggeometrical-

ly ivariant star products, * and *‘ are inl’ariantll’ equivalent. i.e. the formal

power series ~ defining the equivalencecan be chosensue/i that the Tr’S arc

G invariant differential operators.

E.vample: The Moyal * product is defined on hR2°.which is identified with

the cotantent bundle to the abehian group H~.°:the svmpicctie structureF is

the standard one on ~ We shall denote by q’ (i ~ n) the coordinateson

JR°and, with a little abuse of notation, by (q’. p~)the coordinateson T*IR~.

In thesecoordinates,thesympiectic form F reads:

~ dp~Adq1.
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The affine symplecticgroup IR2’~,G = Sp(n, IR) - IR’~,has a hamiltonianaction
on T*IRn.

0 —In
Let F = ~ be the matrix associatedto the symplectic form and let

A =( n) = —F~ the elementsof A are designatedby A0b (a, b ~ 2n).

TheMoyal * productis definedon Nby:

f*g=fg+~ —P~(f,g)
r=1 r!

P~(f,g)= ~ ~ .. . Aarbr
8~ ~ b~~’

b1 ... b,.

It is clearly G invariant in the strong senseand it can be shown that this inva-

riancepropertyuniquely characterizestheMoyai product.
The function p~is tile function correspondingto the element aqj of the Lie

algebraof IR’~the injective Lie homomorphism IR~ .- N which sendsa~on

~<extends>~to an associativeinjective homomorphismof 11 (IR”) (= the universal

enveloppingalgebraof R~)-~N:the image of this homomorphismis theassocia-

tive algebraof polynomials in the variablesp/s with constantcoefficients. We
shall be concernedwith the associative algebra A of polynomials in tile p/s

with coefficientswhich are smooth functions of tile q’’s (A = ]h : IR” —* 11(IR’

1)

smooth]) and with tile subaigebraB of polynomialsin the pt’s with coefficients

which are polynomials in the q”s. Both A and B are also associativealgebras

with respectto theMoyal * product.
In the classical formulation of quantuni mechanicsone associatesto each

function on IR2~belonging to a certain class,a self adjoint operatoron L2(R’~L

in particular to tile spositions q’ correspondsthe operatorq’ J and to themo-
h

mentum p
1 correspondstile operator ~ Ii = ~ x Planckconstant . One

way to extendthis into a linearmapofB into theselfadjoint operatorson L
2(hR’) is

to send a polynomial in ps andq”s onto tile correspondingcompletelysymmetric
- h

expression in the elementaryoperatorsq~‘ I and ~ 3~.This corresi~ondenee

has been generalizedby Weyl to include non polynomial type functions. tllC
domain of this generalizedcorrespondencehasbeenvery extensivelystudied [4].
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DEFINITION 4. The Weyl correspondenceW is the associative algebra 110/norp/us/n

(A. *) -÷(A, 0) (= algebra of self-ad! oint operators on L
2(IR~))such that W(q’) =

=q1landW(p.)=2va

REMARK. We shall also use term Weyl correspondencefor tile extension of W

to non polynomial functions in the variables pt’s. when we will deal with this

extension we will remain formal in tile sensethat tile domain of W is not made

precise.

PROPOSITION3. The Weyl correspondence restricted to the * algebra B sends

a polynomial on the corresponding completely symnmetrized operator.

Proof Assumefirst we havea polynomial of degree1 in thep/s. Then

W~
1q’l... q”) = * q’l * ... * ~‘ — v o.’Iq’i ... q~’... q”)

fl —.

= 2v~o q’l o .,, 0 q” — ~ ö.’1q’ 10... 0 q’Jo ... o q”
1= 1

n —

= n ~ 6.’/q’I 0,~, 0 q’J o... oq” + 2vq’i 0,,, 0 qlfl ac

On the otherhandthe completelysymmetrizedoperatorreads:

2v n .

~ ‘~‘ q

10(1)., ~ i) q’G(~~)(n +1). j=0 oos,,

and the two expressionsare clearly equal. A completely parallel calculation
shows that the equality also holds for a polynomialof degree1 in the q”s. By

recurrencewe can now assumethat theequalityholds on one handfor all degrees

(k in the variablesp/s and for these degreesin p/s for all degreesin q d~sand

on theotherhandfor the degreek in p/s and for all degrees<n in q5 ‘s.
Observethen that onehas theidentity:

p
1 * (p~ ~ ...q~)+ q”” * (p1 pqilq/rn,qlfl)=

Il In...q )-
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Hence:

1 k

W(p
1...p.q

1 ... q” ) = ~ W(p
1)oW(p~...p~. ~ qiH)

I n
+ ~ W(q1 )oW(p1...p1q...~

1”...q~~)

k+l m=1 “ I k

which, by recurrence,is clearly thecompletelysymmetrizedoperator.

Bayen and al. have given in [1] a * productversionof the SchrOdingerequa-

tion and havesuggesteda definition for the spectrumof a hamiltonianfunction.
We simply rephrasetheir definitions in a form which is going to be usedin the

applicationswe are making.
Let ~ : IR” -+ JR be a realanalytic function andlet ~libethe linear map defined

by:

(i,li,f)=(W(f)~p)(0) VfEN for which W(f) is defined.

DEFINITION 5. Givena hamiltonianfunction H ~ JR2n wedefinethe correspon-

dingSchrOdingerequationas.’

i,j, *H=E~,D

where E is a complexnumberand where i,Li * H is the linear map definedby

(i~i * H,f)=(~,f*H) Vf EN for which W(f) is defined.

REMARK. Using the definition of (i we see that SchrOdingerequation means
that, for all appropriatefunctions~

(W(f)W(H)p)(0) =E(W(f)~p)(0)

and in view of the analyticity of p:

W(I-f)~p=E~o.

h
If one takes for hamiitonian function H = — ~ p~?+ V(p) and v = — , this

2 2:

lastrelation is the usualSchrodingerequation.

DEFINITION 6. The spectrumof the hamiltonian H is the set of complex numbers
such that the correspondingSchrodingerequation admitsa non trivial solution.
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3. STAR PRODUCTSON T*SS

The first * product defined on T*S3 was described by Bayen and al. [1],

we recall their construction.
We have shown in § I that T*SI appearsnaturally as symplecticsubmanifoid

of T*1R4 (= IR~x JR4*); it also appearsnaturally as a quotient of an open sub-

manifold w = {(Q, P) E T*1R4 I Q ~ 0 } by the group K (isomorphic to the con-
nectedcomponentof the affine groupof IR) actingon w by:

(p,a)(Q,P)=(pQ,p~P+oQ) (pEJR~,uEIR).

This action of K on w is clearly sympiectic. Let H : w —* ca/K be the canonical

projection and let H’: w .‘ T*S3(c T*JR4) :(Q, F) - Q ~ ~

the map H’ factorizes throuth ca/K and one checks that the induced map

c~:ca/K~~*T*S3is a smooth diffeomorphism. The orbits of K in ca are 2-di-

mensionalsubmanifolds,the tangent plane T at the point (Q. F) to the orbit

of this point is spannedby the vectors:

X=Qa
0-=Pa~, Y=Qa~.

The orbit is thus a symplectic submanifold of w, furthermore there exists a

2-form ‘)‘ of maximal rank on ca/K such that n*y1 =-_(dPAdQ)IT~ (wilere

T’ meansthe orthogonalto T relative to tIle symplectic form ~2 = — dPA dQ).
def

The 2-form

— i(X)&2Ai(Y)~ =
del

is exact, vanishesidentically on T’ and is such that fZ(X, Y) = X(X, Y). Hence

= fl*.y + X

and‘y is a symplecticstructureon ca/K.

Tile 2-form fl’*(_ dPA dQIT*s3) is invariant by K. vanisheson the orbits.

tilermore T’ at a point of T*Sl (C T*lR
4) coincideswith tile tangentspaceto

at that point. Hence fl’*(~~dPA dQIT*
53) = as ~ °il = 11’ one

concludesthat:

~y*( dPAdQI 3) =

and~ is asymplecticdiffeomorphism.

Let now f, g EN (ca/K = T*S
3) and denoteby f(~) = H *f(fl *g) The Pois-

son bracket ] 1, ~ [is aK invariant function on ca.
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]f~}= d~(X7)= n*(dg(nx1))

Thevector field Xyis also K invariant, belongsto T’, and

i(X1-) ~2= — df = ~H *df = i(Xy) fl*y

= H*(i(H~XI)y).

Hence~ = X,<. and:

{i~}={i~}.
This relation leadsto a definition of a * producton T*S

3,

DEFINITION. The <<Moyal * product>>on T*Sl is definedby:

- Fr -

f*g=f*~=~ —pT(f,~).

r0 r.Each term of the right hand side is a function on ca invariant by K as the P’s
are K invariant. The definition thusmakessense.

REMARK. All axioms of * products,except axiom (v) are clearly satisfied.To

check that the various termsare given by bidifferential operatorsit is enough
to observethat a basis of vector fields on ca is given by {X, Y, Z

0(a (b)} where

Z0CT’ and [X, Za] = [Y, Z~]= 0. The invariance propertiesof the Moyal *

product imply that “r~’~’~) is expressedonly in termsof Z0 derivativesoff andj.

PROPOSITION1. The Moyal * product on T*S
3 is strongly invariant by the

action of 0(4) on T*S3.

Proof Geometricalinvarianceof the * product is obvious as the actionof 0(4)

on ca commuteswith tile action of K on ca and as 0(4) preservesthe Moyal

* product.It is also a representationof so(4) becausethe functionsPA Q ~*S3

are tile functions associatedto a basis of so(4) andbecausePA Q ~ = PA Q.
One can identify SU(2) to S3 by considering the point (cr, ~) C C 2

(I cr12 + I ~ 2 = 1) as apoint in JR4. The left action of SU(2) on itself, lifts to an
actionof SU(2) on T*S3 which is hamiltonian. We shall call ~j5

1(i ( 3) the func-

tionscorrespondingto this actionandonechecksthat

pie. —h1—L1 (cf. §1).

Similarly if we denoteby p1 the functions correspondingto the <<right action>>

of SU(2)on T*Sl onehas
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p
1=h1+L1.

In additionthep~are quadraticfunctions on T*IR
4 andone cheeksthat:

p
1 * p1 = p1p1+ v{p1, p1} + 4v

2~
11

The second* product on T*Sl, is the intrinsic * productdefined by identify-

ing T*Sl to T*SU(2). Let G be an arbitrary Lie group. let us denoteby T*G its

cotangentbundle and by H : T*G -+ C the canonical projection. Let (/ (ii)

be a basis of the Lie algebrag of G and let be tile correspondingleft inva-

riant vector fields on C. if 0’ are tile left invariant 1-forms on C such that

O’(X1) = and if p1 : T*G —~ JR : —* E(X1) one checks that tile 1-forms

(dp1, 11*01) form a basis of i-forms on T*G. The dual basis of vector fields

(Z’, Y~)is suchthat

nZi=0 Ii Y=~

* *1 1’

The action of C x C onto G given by (g,h) . x =gxh~ (g,ii,x EG) lifts to

T*G; this action is hamiltonian. The vector fields correspondingto the left
action have for valueat ~ (C T*G) Ad fl(~y - Y1(~),thevector fields associated

to the right action are Y~~E)+ cIJ~pk(UZ’(~)(c1/’ = structureconstantsof g in

thebasisX1) andthecorrespondingfunctionsare preciselythep1’s.
The linear injective map ~ —* N : A’1 —* p1 extendsto an injective niap ~ : 11(g)

(= universal enveloppingalgebra of g ) -+N : - . - X1 ) = X. : . -
k dd k~ ~‘-‘Sk ~(1)

0 —* p. . . . p1 , whose image is the set of polynomials in the p,’s with
o(k) I k

constantcoefficients.

THEOREM [5]. On the cotangentbundle T*G of am: arbitrary Lie group G there

exist a * product baring the following properties

(i) forallfE C~(G), for a/lu C C~(T*G)one/1as

fl*f*u=fl*f.u + (—lv fl*(X ...A~f)(Z”...Z”u)

r! I
(ii) for al/F, Q ,nonomialsofdegreek, k’ in tile p1’s one has

k + k—i

P * Q = (2v)~ (F) - -- k ~

For am-: elementa C 11(g), one denotes be a< the projection of a on the subspacc
= ~ ( homogeneous polynomials of degree ~ ) parallehi’ to the subspacc
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~ 1i”(g)
r0

(iii) in particular whenP = p~:

p1*Q=~ (—2v)

T B,Pj C,~C~ ... ~/~ikr(Z~••ZQ)

whereB is the r-th Bernouilli number.
(iv) the * productis entirelydeterminedbyproperties(i) and (iii).

PROPOSITION1. The * product on T*G definedby the precedingtheoremis

stronglyinvariantby G x C.

Proof The geometrical invariance by the lift of the left actionof G on G is a
consequenceof the followingremarks:

(a) (L*_
1)*fl*f=fl*Lf VgEG

g
(b) L(X1f)=X1(Lf) VgEG, Vi= 1..

(c) (L*_1)*(Ziu) = Zi((L*1)*u) Vg C G, Vi = 1 . . . n
g g

(d) (L*i)*p1=p1 VgEG, Vj= 1.. .n.
g

From these remarkswe deducethe geometricalinvarianceof u * v when either

u = H *f and ii 15 arbitrary,eitheru and v are polynomialsin the pt’s with constant

coefficients. To prove geometricalinvariance for arbitrary u and v in N, it is
enough,as the * product is definedby bidifferential operators,to proveit when

u and v are polynomials in p/s with coefficientswhich are functions on G; this
last point is achievedby a recurrenceargumenton the degreeof the polynomials

in p1’s.
Similarly geometrical invariance by the lift of the right action of G on C

resultsfrom a few simpleobservations

(a’) (R*)*fl*f=fl*R* 1f VgEG

(b’) R*~~f=(Adg)~(R*1f) VgEG. Yi= 1 . . .n

(c’) (R)*ZIu = (Adg)~Zk((R)*u) Vg CC, Vi = 1 . . . n

(d’) (R~)*p1 =(Adg’)~p< VgEG, Vj= 1 . . .n.

A recurrenceargumentsimilar to the one sketchedaboveprovesthe invariance

of the * product.
To get the strong invariance by the lift of the left action of G one observes
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that formula (iii) of the theoremgives:

— (p1*~—~*p1)=~p1.~}.

For the strong invariance by the lift of the right actionof C one remarksthat

the function associatedto the elementX1 of g is (Ad x~1 )kpk and usesthe geo-
metricalinvarianceof the * product.

PROPOSITION 2. The Pi’o geometricallyinvariant * productson T*S
3, comistruct-

edso far are distinctand invariantlyequivalent.

Proof To show that theyare distinctwe observethat

p, ~p
1=p,p1 + v{p1p1[+ 4v

2~,
1 (Moyal)

p1 * p1 = p,p1 + v[p.p.[ (intrinsic).

To provethat they are invariantly equivalent,we remarkthat0 =H,~eR},,,,fl(T*S
3)=

flyby ~
0~4~(T*S

3)- and that thereexists an so(4) invariant torsion free

connectionon T*S
3 [91-

4. SPECTRUM OF THE HYDROGEN ATOM

We first compute the spectrumof the hamiltonianH using Moyal * product

on T*S
3and the correspondingWeyl transform.Recall that

H=— —

2P2

andthat one has:

~ p~= h2 + L2 = P2

so that

p2~ p
1*p1—12v

2.

When using the Weyl transform, it will he easier to deal with a * polynomial

in thep/s than to a rational function. We thus compute
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p2 * F(P2)— F(P2) * P2 = ~ (p, * p
1 * F — F * p~* p1)

= ~ [p1 * (p1 * F—F * p1) + (p~* F—F * p1) * p1]

= 2v ~ (p1 * ~p1,F}+ {p1,F} * p1)

asp1is a polynomial of degree2 on ca. Now

0

and thusP
2 * F(P2) is a formal seriescontainingonly eventerms and truncated

at order4 asP2 is a polynomialof degree4 on ca. Hence

F2 F4

P2*F(P2)=P2F(P2)+ — P
2(P

2,F)+ —

2! 4!

The invariance by so(4) implies that eachof the term is a function of P2 only.

A directcomputationshowsthat:

P
2(P

2,F)= loP2(3F’ +P2F”)

V
4(P

2, F) = 96(1~F’ + 57P2F” + 32P4F” + 4P6F’v).

HencewhenF = onegets

16 1
~1 p2 — — p

4p
2, — =0.

2

This implies that

H~—= I + l6v2H.
H

Schrodingerequationreads:

which by virtue of thepreviousrelation is equivalentto:

1 1+l6v2E

H E

or also to:

I —8v2E
—2E
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DEFINITION. The Weyl transform W on T*S3, associated to the Moval proc/net.

is the honiomnorphismn of the algebra (A. *) (A = [polynomials in f/ic p/s wit/i
coefficients which are smooth: functionson S3[) into the algebra (A. 0) (A =

algebraofself-adjointoperatorson L2(S3))which issue/i that:

(i) W(p
1)= 2vX1

(ii) W(fl*g)=g Id (g :S
3-+lR: H: T*SI~~+S3)

(iii) W(f * g) = W(f) 0 W(g).

As in the flat (1R2”) casewe interpret i~ii as the linearmap associatedto an analytic

function ~ on S3 by

(~i,f) = (W(f)~o)(e) (e = unit ofSU(2)).

Schrodingerequationnow implies that:

1—8 v E
4v2~= ‘p

— 2E

where ~ is the Laplace -Beltrami operator on ~ This gives the spectrumas

— 8v2E
= —4v2(n + 2)n

— 2E

or:

E=
8v2(n + 1)2

When p = onehastheusualspectrumof thehydrogenatom [1].

Computationof the spectrumof H with the intrinsic * product and the cor-

respondingWeyl transformstartsin thesameway. Onehas

H~
2P’- ‘

As above:

p2 * F(P2) = F(P2) * P2

and thus P2 * F(P2) is a formal seriescontainingonly eventerms.The invariance

by so(4) implies that each term is a function of P2 alone. But the seriesis not

truncatedat order 4. Furthermorea brutal calculation shows that the first term
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hasa coefficient which is totally different from the one appearingin the Moyal

product:

32v2
H~— = 1— H+...

H 3

This is already an indication that the spectrumwill be different. We shall now

prove that thespectraareindeeddifferent, in a sequenceof short lemmas.

LEMMA 1. Letgbea smoothfunctionofF2. Then

P2*g=P2-g+ t~O ~2t[~ a~g~(P2)1+Tt]

r>0

wherea~is a real numberamidg” is thertI~derivativeofg.

This is provedusingformula (iii) of the theoremof §3, and the fact that by
invarianceeachterm is a functionof P2 above.

LEMMA 2. Letf, g besmoothfunctionsofP2. Then

f~g =fg + ~ F2t[~ a~fguI(P2)i+1t]
UI > 0

wherea~isa real number.

To prove this lemma one first observesthat it is enoughto prove it whenf

is a polynomial as the * product is given by differential operators.One then
proceedsby recurrenceon thedegreeof f.

This implies that:

1 1
p2 * — = I + ~ v~a”

p2 1>0 t (p2)t

LEMMA 3. Thefollowingformal identity holds

1t 1 1 1 1
v 2s s _________

* — = — *...* — —— + ~ F C
p

2 dcl P2 P2 (p2)t s>O I (p2)t+s

where c~is a realnumber.

This is provedby induction on t.
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Using lemma3 one seesthat thereexist real Ilumbcrsa, suchthat

I I I
— * P = I + ~ ,C’a — ,> - — 1 times)p2 1>0 p2 p2

Going hackto Sehrödinger’sequationwe get:

* H * — = ~ (I + ~ ~,2‘a,’(H , - 11))
JJ i>1)

= ~(l + ~ v2’a~E’)=E~ * —

1>0 1/

or equivalently that (1 + ~ i’2~aE’) is all eigenvalue of . Using the

Weyl transform associatedto this product we see as above that there exist an

integerin suchthat:

— (I + ~ v2ta’Et) = 81,27,1(1,1 + ~).
E t>o

Assume that tile spectrumof H coincideswith the one obtainedwith tile Moval

* product.Then for any integern, therewould exist a integer in such that

a
(ml + 1)2 1 + ~ = ni(ni + ).

- (>0 (n+ 1)21

Tilis is easily shown to be impossibleand thus the spectrumof 11 is not theone

given by the Moyal * product. One can prove a slightly stronger result, namely

that tile spectrum is not the form:

(KCO)
81,2(11+ 1)2

We arefor themomentunableto computethespectrumof 11.
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